Archive

Archive for the ‘Guinea Pigs’ Category

How to set a static IP address on Ubuntu 14.04 server (and others)

September 16th, 2014 No comments

This assumes you want to set a static IP address on the network device eth0.

Open up the interfaces file

sudo nano /etc/network/interfaces

and remove or comment out the line that says

iface eth0 inet dhcp

then add the following lines in its place:

iface eth0 inet static
address [static IP address, i.e. 192.168.1.123]
netmask [i.e. 255.255.255.0]
network [i.e. 192.168.1.0]
broadcast [i.e. 192.168.1.255]
gateway [i.e. 192.168.1.1]
dns-nameservers [i.e. 8.8.8.8]

Save the file and reboot the server. On some systems you may also need to update /etc/resolv.conf and /etc/hosts




I am currently running a variety of distributions, primarily Linux Mint 18.
Previously I was running KDE 4.3.3 on top of Fedora 11 (for the first experiment) and KDE 4.6.5 on top of Gentoo (for the second experiment).

CoreGTK 2.24.0 Released!

August 4th, 2014 No comments

The initial version of CoreGTK, version 2.24.0, has been tagged for release today.

Features include:

  • Targets GTK+ 2.24
  • Support for GtkBuilder
  • Can be used on Linux, Mac and Windows

CoreGTK is an Objective-C language binding for the GTK+ widget toolkit. Like other “core” Objective-C libraries, CoreGTK is designed to be a thin wrapper. CoreGTK is free software, licensed under the GNU LGPL.

You can find more information about the project here and the release itself here.

This post originally appeared on my personal website here.




I am currently running a variety of distributions, primarily Linux Mint 18.
Previously I was running KDE 4.3.3 on top of Fedora 11 (for the first experiment) and KDE 4.6.5 on top of Gentoo (for the second experiment).

Linux alternatives: Mp3tag → EasyTAG

August 4th, 2014 1 comment

A big part of my move from Windows to Linux has been finding replacements for the applications that I had previously used day-to-day that are not available on Linux. For the major applications like my web browser (Firefox), e-mail client (Thunderbird), password manager (KeePass2) this hasn’t been a problem because they are all available on Linux as well. Heck you can even install Microsoft Office with the latest version of wine if you wanted to.

Unfortunately there still remains some programs that will simply not run under Linux. Thankfully this isn’t a huge deal because Linux has plenty of alternative applications that fill in all of the gaps – the trick is just finding the one that is right for you.

Mp3tag is an excellent Windows application that lets you edit the meta data (i.e. artist, album, track, etc.) inside of an MP3, OGG or similar file.

Mp3tag on Windows

Mp3tag on Windows

As a Linux alternative to this excellent program I’ve found a very similar application called EasyTAG that offers at least all of the features that I used to use in Mp3tag (and possibly even more).

EasyTAG on Linux

EasyTAG on Linux

For anyone looking for a good meta data editor I would highly recommend trying this one out.




I am currently running a variety of distributions, primarily Linux Mint 18.
Previously I was running KDE 4.3.3 on top of Fedora 11 (for the first experiment) and KDE 4.6.5 on top of Gentoo (for the second experiment).

How to migrate from TrueCrypt to LUKS file containers

June 15th, 2014 2 comments

With the recent questions surrounding the security of TrueCrypt there has been a big push to move away from that program and switch to alternatives. One such alternative, on Linux anyway, is the Linux Unified Key Setup (or LUKS) which allows you to encrypt disk volumes. This guide will show you how to create encrypted file volumes, just like you could using TrueCrypt.

The Differences

There are a number of major differences between TrueCrypt and LUKS that you may want to be aware of:

  • TrueCrypt supported the concept of hidden volumes, LUKS does not.
  • TrueCrypt allowed you to encrypt a volume in-place, without losing data, LUKS does not.
  • TrueCrypt supports cipher cascades where the data is encrypted using multiple different algorithms just in case one of them is broken at some point in the future. As I understand it this is being talked about for the LUKS 2.0 spec but is currently not a feature.

If you are familiar with the terminology in TrueCrypt you can think of LUKS as offering both full disk encryption and standard file containers.

How to create an encrypted LUKS file container

The following steps borrow heavily from a previous post so you should go read that if you want more details on some of the commands below. Also note that while LUKS offers a lot of options in terms of cipher/digest/key size/etc, this guide will try to keep it simple and just use the defaults.

Step 1: Create a file to house your encrypted volume

The easiest way is to run the following commands which will create the file and then fill it with random noise:

# fallocate -l <size> <file to create>
# dd if=/dev/urandom of=<file to create> bs=1M count=<size>

For example let’s say you wanted a 500MiB file container called MySecrets.img, just run this command:

# fallocate -l 500M MySecrets.img
# dd if=/dev/urandom of=MySecrets.img bs=1M count=500

Here is a handy script that you can use to slightly automate this process:

#!/bin/bash
NUM_ARGS=$#

if [ $NUM_ARGS -ne 2 ] ; then
    echo Wrong number of arguments.
    echo Usage: [size in MiB] [file to create]

else

    SIZE=$1
    FILE=$2

    echo Creating $FILE with a size of ${SIZE}MB

    # create file
    fallocate -l ${SIZE}M $FILE

    #randomize file contents
    dd if=/dev/urandom of=$FILE bs=1M count=$SIZE

fi

Just save the above script to a file, say “create-randomized-file-volume.sh”, mark it as executable and run it like this:

# ./create-randomized-file-volume.sh 500 MySecrets.img

Step 2: Format the file using LUKS + ext4

There are ways to do this in the terminal but for the purpose of this guide I’ll be showing how to do it all within gnome-disk-utility. From the menu in Disks, select Disks -> Attach Disk Image and browse to your newly created file (i.e. MySecrets.img).

Don't forget to uncheck the box!

Don’t forget to uncheck the box!

Be sure to uncheck “Set up read-only loop device”. If you leave this checked you won’t be able to format or write anything to the volume. Select the file and click Attach.

This will attach the file, as if it were a real hard drive, to your computer:

attachedindisksNext we need to format the volume. Press the little button with two gears right below the attached volume and click Format. Make sure you do this for the correct ‘drive’ so that you don’t accidentally format your real hard drive!

Please use a better password

Please use a better password

From this popup you can select the filesystem type and even name the drive. In the image above the settings will format the drive to LUKS and then create an ext4 filesystem within the encrypted LUKS one. Click Format, confirm the action and you’re done. Disks will format the file and even auto-mount it for you. You can now copy files to your mounted virtual drive. When you’re done simply eject the drive like normal or (with the LUKS partition highlighted) press the lock button in Disks. To use that same volume again in the future just re-attach the disk image using the steps above, enter your password to unlock the encrypted partition and you’re all set.

But I don’t even trust TrueCrypt enough to unlock my already encrypted files!

If you’re just using TrueCrypt to open an existing file container so that you can copy your files out of there and into your newly created LUKS container I think you’ll be OK. That said there is a way for you to still use your existing TrueCrypt file containers without actually using the TrueCrypt application.

First install an application called tc-play. This program works with the TrueCrypt format but doesn’t share any of its code. To install it simply run:

# sudo apt-get install tcplay

Next we need to mount your existing TrueCrypt file container. For the sake of this example we’ll assume your file container is called TOPSECRET.tc.

We need to use a loop device but before doing that we need to first find a free one. Running the following command

# sudo losetup -f

should return the first free loop device. For example it may print out

/dev/loop0

Next you want to associate the loop device with your TrueCrypt file container. You can do this by running the following command (sub in your loop device if it differs from mine):

# sudo losetup /dev/loop0 TOPSECRET.tc

Now that our loop device is associated we need to actually unlock the TrueCrypt container:

# sudo tcplay -m TOPSECRET.tc -d /dev/loop0

Finally we need to mount the unlocked TrueCrypt container to a directory so we can actually use it. Let’s say you wanted to mount the TrueCrypt container to a folder in the current directory called SecretStuff:

# sudo mount -o nosuid,uid=1000,gid=100 /dev/mapper/TOPSECRET.tc SecretStuff/

Note that you should swap your own uid and gid in the above command if they aren’t 1000 and 100 respectively. You should now be able to view your TrueCrypt files in your SecretStuff directory. For completeness sake here is how you unmount and re-lock the same TrueCrypt file container when you are done:

# sudo umount SecretStuff/
# sudo dmsetup remove TOPSECRET.tc
# sudo losetup -d /dev/loop0

This post originally appeared on my personal website here.




I am currently running a variety of distributions, primarily Linux Mint 18.
Previously I was running KDE 4.3.3 on top of Fedora 11 (for the first experiment) and KDE 4.6.5 on top of Gentoo (for the second experiment).

Create a virtual hard drive volume within a file in Linux

June 15th, 2014 5 comments

If you are not familiar with the concept of virtual hard drive volumes, sometimes called file containers, they are basically regular looking files that can be used by your computer as if they were real hard drives. So for example you could have a file called MyDrive.img on your computer and with a few quick actions it would appear as though you had just plugged in an external USB stick or hard drive into your computer. It acts just like a normal, physical, drive but whenever you copy anything to that location the copied files are actually being written to the MyDrive.img file behind the scenes. This is not unlike the dmg files you would find on a Mac or even something akin to TrueCrypt file containers.

Why would I want this?

There are a number of reasons why you may be interested in creating virtual volumes. From adding additional swap space to your computer (i.e. something similar to a page file on Windows without needing to create a new hard drive partition) to creating portable virtual disk drives to back up files to, or even just doing it because this is Linux and it’s kind of a neat thing to do.

What are the steps to creating a file container?

The process seems a bit strange but it’s actually really straight forward.

  1. Create a new file to hold the virtual drive volume
      (Optional) Initialize it by filling it with data
  2. Format the volume
  3. Mount the volume and use it

Create a new file to hold the virtual drive volume

There are probably a million different ways to do this but I think the most simple way is to run the following command from a terminal:

fallocate -l <size> <file to create>

So let’s say you wanted to create a virtual volume in a file called MyDrive.img in the current directory with a size of 500MiB. You would simply run the following command:

fallocate -l 500M MyDrive.img

You may notice that this command finishes almost instantly. That’s because while the system created a 500MiB file it didn’t actually write 500MiB worth of data to the file.

This is where the optional step of ‘initializing’ the file comes into play. To be clear you do not need to do this step at all but it can be good practice if you want to clean out the contents of the allocated space. For instance if you wanted to prevent someone from easily noticing when you write data to that file you may pre-fill the space with random data to make it more difficult to see or you may simply want to zero out that part of the hard drive first.

Anyway if you choose to pre-fill the file with data the easiest method is to use the dd command. PLEASE BE CAREFUL – dd is often nicknamed disk destroyer because it will happily overwrite any data you tell it to, including the stuff you wanted to keep if you make a mistake typing the command!

To fill the file with all zeros simply run this command:

dd if=/dev/zero of=<your file> bs=1M count=<your file size in MiB>

So for the above file you would run:

dd if=/dev/zero of=MyDrive.img bs=1M count=500

If you want to fill it with random data instead just swap /dev/zero for /dev/urandom or /dev/random in the command:

dd if=/dev/urandom of=MyDrive.img bs=1M count=500

Format and mount the virtual volume

Next up we need to give the volume a filesystem. You can either do this via the command line or using a graphical tool. I’ll show you an example of both.

From the terminal you would run the appropriate mkfs command on the file. As an example this will format the file above using the ext3 filesystem:

mkfs -t ext3 MyDrive.img

You may get a warning that looks like this

MyDrive.img is not a block special device.
Proceed anyway? (y,n)

Simply type the letter ‘y’ and press Enter. With any luck you’ll see a bunch of text telling you exactly what happened and you now have a file that is formatted with ext3!

If you would rather do things the graphical way you could use a tool like Disks (gnome-disk-utility) to format the file.

From the menu in Disks, select Disks -> Attach Disk Image and browse to your newly created file (i.e. MyDrive.img).

Don't forget to uncheck the box!

Don’t forget to uncheck the box!

Be sure to uncheck “Set up read-only loop device”. If you leave this checked you won’t be able to format or write anything to the volume. Select the file and click Attach.

This will attach the file, as if it were a real hard drive, to your computer:

MyDriveAttached

Next we need to format the volume. Press the little button with two gears right below the attached volume and click Format. Make sure you do this for the correct ‘drive’ so that you don’t accidentally format your real hard drive!

Make sure you're formatting the correct drive!

Make sure you’re formatting the correct drive!

From this popup you can select the filesystem type and even name the drive. You may also use the “Erase” option to write zeros to the file if you wanted to do it here instead of via the terminal as shown previously. In the image above the settings will format the drive using the ext4 filesystem. Click Format, confirm the action and you’re done. Disks will format the file and even auto-mount it for you. You can now copy files to your mounted virtual drive. When you’re done simply eject the drive like normal or press the square Stop button in Disks. To use that same volume again in the future just re-attach the disk image using the steps above.

To mount the formatted file from the terminal you will need to first create a folder to mount it to. Let’s say we wanted to mount it to the folder /media/MyDrive. First create the folder there:

sudo mkdir /media/MyDrive

Next mount the file to the folder:

sudo mount -t auto -o loop MyDrive.img /media/MyDrive/

Now you can copy files to the drive just like before. When you’re finished unmount the volume by running this command:

sudo umount /media/MyDrive/

And there you have it. Now you know how to create virtual volume files that you can use for just about anything and easily move from computer to computer.

This post originally appeared on my personal website here.




I am currently running a variety of distributions, primarily Linux Mint 18.
Previously I was running KDE 4.3.3 on top of Fedora 11 (for the first experiment) and KDE 4.6.5 on top of Gentoo (for the second experiment).

Set up KeePass Auto-Type on Linux

June 8th, 2014 3 comments

If you’ve used KeePass on Windows you may be very attached to its auto-type feature, where with a single key-combo press the application with magically type your user name and password into the website or application you’re trying to use. This is super handy and something that is sadly missing by default on Linux. Thankfully its also very easy to make work on Linux.

1. Start by installing the xdotool package

On Debian/Ubuntu/etc simply run:

sudo apt-get install xdotool

2. Next find out where the keepass2 executable is installed on your system

The easiest way to do this is to run:

which keepass2

On my system this returns /usr/bin/keepass2. This file is actually not the program itself but a script that bootstraps the program. So to find out where the real executable run:

cat /usr/bin/keepass2

On my system this returns

#!/bin/sh
exec /usr/bin/cli /usr/lib/keepass2/KeePass.exe "$@"

So the program itself is actually located at /usr/lib/keepass2/KeePass.exe.

3. Create a custom keyboard shortcut

linuxmintkeyboardshortcut

The process for this will differ depending on which distribution you’re running but it’s usually under the Keyboard settings. For the command enter the following:

mono /usr/lib/keepass2/KeePass.exe --auto-type

Now whenever you key in your shortcut keyboard combo it will tell KeePass to auto-type your configured username/password/whatever you setup in KeePass. The only catch is that you must first open KeePass and unlock your database.




I am currently running a variety of distributions, primarily Linux Mint 18.
Previously I was running KDE 4.3.3 on top of Fedora 11 (for the first experiment) and KDE 4.6.5 on top of Gentoo (for the second experiment).
Categories: Linux, Tyler B Tags:

Force Thunderbird/Enigmail to use a specific signing (hash) algorithm

June 8th, 2014 No comments

If you’ve had issues trying to get Thunderbird to send your PGP signed e-mail using anything other than SHA-1 there is a quick and easy fix that will let you pick whichever hash you prefer.

1) Open up Thunderbird’s preferences

2) On the Advanced Tab, under General click Config Editor

3) In the about:config window search for “extensions.enigmail.mimeHashAlgorithm” without quotes. Double click on this and enter a value. The value will determine which hash algorithm is used for signing.

The values are as follows:

0: Automatic selection, let GnuPG choose (note that while this may be the default it may also be the one that doesn’t work depending on your configuration).
1: SHA-1
2: RIPEMD-160
3: SHA-256
4: SHA-384
5: SHA-512
6: SHA-224

This post originally appeared on my personal website here.




I am currently running a variety of distributions, primarily Linux Mint 18.
Previously I was running KDE 4.3.3 on top of Fedora 11 (for the first experiment) and KDE 4.6.5 on top of Gentoo (for the second experiment).

How to mount a Windows share on startup

April 28th, 2014 2 comments

I recently invested in a NAS device to add a little bit of redundancy to my personal files. With this particular NAS the most convenient way to use the files it stores is via the Windows share protocol (also known a SMB or CIFS). Linux has supported these protocols for a while now so that’s great but I wanted it to automatically map the shared directory on the NAS to a directory on my Linux computer on startup. Thankfully there is a very easy way to do just that.

1) First install cifs-utils

sudo apt-get install cifs-utils

2) Next edit the fstab file and add the share(s)

To do this you’ll need to add a new line to the end of the file. You can easily open the file using nano in the terminal by running the command:

sudo nano /etc/fstab

Then use the arrow keys to scroll all the way to the bottom and add the share in the following format:

//<path to server>/<share name>     <path to local directory>     cifs     guest,uid=<user id to mount files as>,iocharset=utf8     0     0

Breaking it down a little bit:

  • <path to server>: This is the network name or IP address of the computer hosting the share (in my case the NAS). For example it could be something like “192.168.1.1” or something like “MyNas”
  • <share name>: This is the name of the share on that computer. For example I set up my NAS to share different directories one of which was called “Files”
  • <path to local directory>: This is where you want the remote files to appear locally. For example if you want them to appear in a folder under /media you could do something like “/media/NAS”. Just make sure that the directory exists (create it if you need to).
  • <user id to mount files as>: This defines the permissions to give the files. On Ubuntu the first user you create is usually give uid 1000 so you could put “1000” here. To find out the uid of any random user use the command “id <user>” without quotes.

So for example my added line in fstab was

//192.168.3.25/Files     /media/NAS     cifs     guest,uid=1000,iocharset=utf8     0     0

Then save the file “Ctrl+O” and then Enter in nano.

3) Mount the remote share

Run this command to test the share:

sudo mount -a

If that works you should see the files appear in your local directory path. When you restart the computer it will also attempt to connect to the share and place the files in that location as well. Keep in mind that anything you do to the files there also changes them on the share!




I am currently running a variety of distributions, primarily Linux Mint 18.
Previously I was running KDE 4.3.3 on top of Fedora 11 (for the first experiment) and KDE 4.6.5 on top of Gentoo (for the second experiment).
Categories: Linux, Tyler B Tags: , , , , ,

Ubuntu 14.04 VNC woes? Try this!

April 28th, 2014 No comments

If, like me, you’ve recently upgraded to Ubuntu 14.04 only to find out that for whatever reason you can no longer VNC to that machine anymore (either from Windows or even an existing Linux install) have no fear because I’ve got the fix for you!

Simply open up a terminal and run the following line:

gsettings set org.gnome.Vino require-encryption false

Obviously if you use VNC encryption you may not want to do this but if you’re like me and just use VNC on the local network it should be safe enough to disable.




I am currently running a variety of distributions, primarily Linux Mint 18.
Previously I was running KDE 4.3.3 on top of Fedora 11 (for the first experiment) and KDE 4.6.5 on top of Gentoo (for the second experiment).

Cloud Saves for Minecraft

February 21st, 2014 No comments

I’ve recently become addicted to Minecraft. I realize that I’m late to this game, having only recently discovered it despite its popularity over the past couple of years. As readers know, I typically switch between a few different machines throughout my day, and indeed between a few different operating systems. Luckily, Minecraft is portable and can be played on any platform – but how to go about transferring saved games?

By default, Minecraft puts your user data and game saves in a hidden folder within your home folder. In particular, save game data is stored at ~/.minecraft/saves/. My solution to the cloud save problem was to create a minecraft folder in my DropBox, and then symlink the default save folder to this location.

Start by creating a folder in your DropBox (or other cloud share platform) folder:

jonf@UBUNTU:~$ mkdir ~/Dropbox/minecraft
jonf@UBUNTU:~$ mkdir ~/Dropbox/minecraft/saves

Next, back up your existing save games folder. We’ll restore these once the symlink has been created.

jonf@UBUNTU:~$ mv ~/.minecraft/saves/ ~/.minecraft/saves.old

Now create the symlink between the new DropBox folder and the save game location:

jonf@UBUNTU:~$ ln -s ~/Dropbox/minecraft/saves/ ~/.minecraft/saves
jonf@UBUNTU:~$ ls -la ~/.minecraft
total 24
drwxrwxr-x  3 jonf jonf  4096 Feb 21 08:58 .
drwx------ 43 jonf jonf 12288 Feb 21 08:55 ..
lrwxrwxrwx  1 jonf jonf    38 Feb 21 08:58 saves -> /home/jonf/Dropbox/minecraft/saves/
drwxrwxr-x  2 jonf jonf  4096 Feb 21 08:55 saves.old

As you can see, the saves folder under the .minecraft folder now points to the saves folder that we created inside of our DropBox folder. This means that if we put anything inside of that folder, it will be automatically written to the DropBox folder, which will be synced to all of my other computers.

Finally, let’s restore the existing saved games folder into the new shared folder:

jonf@UBUNTU:~$ mv ~/.minecraft/saves.old/ ~/.minecraft/saves

If I take the same steps on my other machines, then I can play Minecraft from any of my machines with my saved games always available, no matter where I am. Keep in mind that the ln syntax for Mac OSX is slightly different than the example above. The steps remain the same, but you’ll want to check the docs if you’re trying to adopt these steps for a different platform.




On my Laptop, I am running Linux Mint 12.
On my home media server, I am running Ubuntu 12.04
Check out my profile for more information.

Extend the life of your SSD on linux

February 9th, 2014 2 comments

This past year I purchased a laptop that came with two drives, a small 24GB SSD and a larger 1TB HDD. My configuration has placed the root filesystem (i.e. /) on the SSD and my home directory (i.e. /home) on the HDD so that I benefit from very fast system booting and application loading but still have loads of space for my personal files. The only downside to this configuration is that linux is sometimes not the best at ensuring your SSD lives a long life.

Unlike HDDs, SSDs have a finite number of write operations before they are guaranteed to fail (although you could argue HDDs aren’t all that great either…). Quite a few linux distributions have not yet been updated to detect and configure SSDs in such a way as to extend their life. Luckily for us it isn’t all that difficult to make the changes ourselves.

Change #1 – noatime

The first change that I do is to configure my system so that it no longer updates each files access time on the SSD partition. By default Linux records information about when files were created and last modified as well as when it was last accessed. There is a cost associated with recording the last access time and including this option can not only significantly reduce the number of writes to the drive but also give you a slight performance improvement as well. Note that if you care about access times (for example if you like to perform filesystem audits or something like that) then obviously disabling this may not be an option for you.

Open /etc/fstab as root. For example I used nano so I ran:

sudo nano /etc/fstab

Find the SSD partition(s) (remember mine is just the root, /, partition) and add noatime to the mounting options:

UUID=<some hex string> /               ext4    noatime,errors=remount-ro

Change #2 – discard

UPDATE: Starting with 14.04 you no longer need to add discard to your fstab file. It is now handled automatically for you through a different system mechanism.

TRIM is a technology that allows a filesystem to immediately notify the SSD when a file is deleted so that it can more efficiently manage the underlying storage and improve the lifespan of the drive. Not all filesystems support TRIM but if you are like most people and use ext4 then you can safely enable this feature. Note that some people have actually had drastic write performance decreases when enabling this option but personally I’d rather have that than a dead drive.

To enable TRIM support start by again opening /etc/fstab as root and find the SSD partition(s). This time add discard to the mounting options:

UUID=<some hex string> /               ext4    noatime,errors=remount-ro,discard

Change #3 – tmpfs

If you have enough RAM you can also dedicate some of it to mounting specific partitions via tmpfs. Tmpfs essentially makes a fake hard drive, known as a RAM disk, that exists only in your computer’s RAM memory while it is running. You could use this to store commonly written to temporary filesystems like /tmp or log file locations such as /var/logs.

This has a number of consequences. For one anything that gets written to tmpfs will not be there the second you restart or turn the computer off – it never gets written back to a real hard drive. This means that while you can save your SSD all of those log file writes you also won’t be able to debug a problem using those log files on a computer crash or something of the like. Also being a RAM disk means that it will slowly(?) eat up your RAM growing larger and larger the more you write to it between restarts. There are options for putting limits on how large a tmpfs partition can grow but I’ll leave you to search for those.

To set this up open /etc/fstab as root. This time add new tmpfs lines using the following format:

tmpfs   /tmp    tmpfs   defaults  0       0

You can lock it down even more by adding some additional options like noexec (disallows execution of binaries on the filesystem) and nosuid (block the operation of suid, and sgid bits). Some other locations you may consider adding are /var/log, /var/cache/apt etc. Please read up on each of these before applying them as YMMV.

Categories: Hardware, Tyler B Tags: , , , , ,

Change the default sort order in Nautilus

February 9th, 2014 1 comment

The default sort order in Nautilus has been changed to sorting alphabetically by name and the option to change this seems to be broken. For example I prefer my files to be sorted by type so I ran

dconf-editor

and browsed to org/gnome/nautilus/preferences. From there you should be able to change the value by using the drop down:

 

Seems easy enough

Seems easy enough

Unfortunately the only option available is modification time. Once you change it to that you can’t even go back to name. This also appears to be a problem when trying to set the value using the command line interface like this:

dconf write /org/gnome/nautilus/preferences/default-sort-order type

I received an “error: 0-4:unknown keyword” message when I tried to run that.

Thanks to the folks over on the Ask Ubuntu forum I was finally able to get it to change by issuing this command instead:

gsettings set org.gnome.nautilus.preferences default-sort-order type

where type could be swapped out for whatever you prefer it to be ordered by.

Great Success!

Great Success!

CoreGTK

January 28th, 2014 2 comments

A while back I made it my goal to put together an open source project as my way of contributing back to the community. Well fast forward a couple of months and my hobby project is finally ready to be shown the light of day. I give you… CoreGTK

CoreGTK is an Objective-C binding for the GTK+ library which wraps all objects descending from GtkWidget (plus a few others here and there). Like other “core” Objective-C libraries it is designed to be a very thin wrapper, so that anyone familiar with the C version of GTK+ should be able to pick it up easily.

However the real goal of CoreGTK is not to replace the C implementation for every day use but instead to allow developers to more easily code GTK+ interfaces using Objective-C. This could be especially useful if a developer already has a program, say one they are developing for the Mac, and they want to port it to Linux or Windows. With a little bit of MVC a savvy developer would only need to re-write the GUI portion of their application in CoreGTK.

So what does a CoreGTK application look like? Pretty much like a normal Objective-C program:

/*
 * Objective-C imports
 */
#import <Foundation/Foundation.h>
#import "CGTK.h"
#import "CGTKButton.h"
#import "CGTKSignalConnector.h"
#import "CGTKWindow.h"

/*
 * C imports
 */
#import <gtk/gtk.h>

@interface HelloWorld : NSObject
/* This is a callback function. The data arguments are ignored
 * in this example. More callbacks below. */
+(void)hello;

/* Another callback */
+(void)destroy;
@end

@implementation HelloWorld
int main(int argc, char *argv[])
{
    NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

    /* We could use also CGTKWidget here instead */
    CGTKWindow *window;
    CGTKButton *button;

    /* This is called in all GTK applications. Arguments are parsed
    * from the command line and are returned to the application. */
    [CGTK autoInitWithArgc:argc andArgv:argv];

    /* Create a new window */
    window = [[CGTKWindow alloc] initWithGtkWindowType:GTK_WINDOW_TOPLEVEL];

    /* Here we connect the "destroy" event to a signal handler in 
     * the HelloWorld class */
    [CGTKSignalConnector connectGpointer:[window WIDGET] 
        withSignal:@"destroy" toTarget:[HelloWorld class] 
        withSelector:@selector(destroy) andData:NULL];

    /* Sets the border width of the window */
    [window setBorderWidth: [NSNumber numberWithInt:10]];

    /* Creates a new button with the label "Hello World" */
    button = [[CGTKButton alloc] initWithLabel:@"Hello World"];

    /* When the button receives the "clicked" signal, it will call the
     * function hello() in the HelloWorld class (below) */
    [CGTKSignalConnector connectGpointer:[button WIDGET] 
        withSignal:@"clicked" toTarget:[HelloWorld class] 
        withSelector:@selector(hello) andData:NULL];

    /* This packs the button into the window (a gtk container) */
    [window add:button];

    /* The final step is to display this newly created widget */
    [button show];

    /* and the window */
    [window show];

    /* All GTK applications must have a [CGTK main] call. Control ends here
     * and waits for an event to occur (like a key press or
     * mouse event). */
    [CGTK main];

    [pool release];

    return 0;
}

+(void)hello
{
    NSLog(@"Hello World");
}

+(void)destroy
{
    [CGTK mainQuit];
}
@end
Hello World in action

Hello World in action

And because Objective-C is completely compatible with regular old C code there is nothing stopping you from simply extracting the GTK+ objects and using them like normal.

// Use it as an Objective-C CoreGTK object!
CGTKWindow *cWindow = [[CGTKWindow alloc] 
    initWithGtkWindowType:GTK_WINDOW_TOPLEVEL];

// Or as a C GTK+ window!
GtkWindow *gWindow = [cWindow WINDOW];

// Or even as a C GtkWidget!
GtkWidget *gWidget = [cWindow WIDGET];

// This...
[cWindow show];

// ...is the same as this:
gtk_widget_show([cWindow WIDGET]);

You can even use a UI builder like GLADE, import the XML and wire up the signals to Objective-C instance and class methods.

CGTKBuilder *builder = [[CGTKBuilder alloc] init];
if(![builder addFromFile:@"test.glade"])
{
    NSLog(@"Error loading GUI file");
    return 1;
}

[CGTKBuilder setDebug:YES];

NSDictionary *dic = [[NSDictionary alloc] initWithObjectsAndKeys:
                 [CGTKCallbackData withObject:[CGTK class] 
                     andSEL:@selector(mainQuit)], @"endMainLoop",
                 [CGTKCallbackData withObject:[HelloWorld class] 
                     andSEL:@selector(hello)], @"on_button2_clicked",
                 [CGTKCallbackData withObject:[HelloWorld class] 
                     andSEL:@selector(hello)], @"on_button1_activate",
                 nil];

[builder connectSignalsToObjects:dic];

CGTKWidget *w = [builder getWidgetWithName:@"window1"];
if(w != nil)
{
    [w showAll];
}

[builder release];

So there you have it that’s CoreGTK in a nutshell.

There are a variety of ways to help me out with this project if you are so inclined to do so. The first task is probably just to get familiar with it. Download CoreGTK from the GitHub project page and play around with it. If you find a bug (very likely) please create an issue for it.

Another easy way to get familiar with CoreGTK is to help write/fix documentation – a lot of which is written in the source code itself. Sadly most of the current documentation simply states which underlying GTK+ function is called and so it could be cleaned up quite a bit.

At the moment there really isn’t anything more formal than that in place but of course code contributions would also be welcome!

Update: added some pictures of the same program running on all three operating systems.

Hello World on Windows

Hello World on Windows

Hello World on Mac

Hello World on Mac

Hello World on Linux

Hello World on Linux

This post originally appeared on my personal website here.




I am currently running a variety of distributions, primarily Linux Mint 18.
Previously I was running KDE 4.3.3 on top of Fedora 11 (for the first experiment) and KDE 4.6.5 on top of Gentoo (for the second experiment).

A tale of a gillion installs

January 21st, 2014 1 comment

Install number one: LMDE 201303.  I was hoping for the best of both worlds, but I got driver issues instead.  LMDE has known ATI proprietary driver install issues.  I followed the Mint instructions and got it working, then got a blank screen after too much tinkering.  I was surprised that LMDE had this problem since Debian doesn’t, and LMDE should be a more polished version of LMDE.  This wasn’t a big deal, but I decided to give Debian a chance.

Install number two: debian stable (7.3).  The debian website has a convoluted maze of installation links, but it’s still fairly easy to find an ISO for the stable version you need.  I installed from the live ISO using a USB key.  The installation and ATI driver update went smoothly, and I thought all was well at first.  I soon realized that about 50% of reboots failed; the audio driver was the culprit.  I installed the latest driver from Realtec/ALSA and it sort of worked, but I was still getting some crap from # dmesg and the audio would crackle with some files.

LMDE.  I live booted LMDE to see if the same issue existed there and it did.

Time for Mint 16.  As expected everything worked.  Man I really wish Ubuntu hadn’t chosen the dark side – their OS is really good.  All of these distros use ALSA audio drivers, so why is Ubuntu the only one that works?   Kernel versions:

debian stable (7.3):
cat /proc/asound/version
Advanced Linux Sound Architecture Driver Version 1.0.24.
Mint 16:
cat /proc/asound/version
Advanced Linux Sound Architecture Driver Version k3.11.0-12-generic.

One more thing to check.  What kernel version is the real debian testing “jessie” using:

http://packages.debian.org/testing/kernel/linux-image-3.12-1-amd64

LMDE 201303 = 3.2
debian stable 7.3 = 3.2
Mint 16 = 3.11
debian testing “jessie - Jan 2014” = 3.12!

I determined to try debian testing before settling for Mint.  I tried a netinstall from USB key which killed my PC and grub bootloader.  The debian stable live iso usb key decided to stop working as well.   I finally got a real DVD debian stable install to work, changed the repositories to point to “jessie” and upgraded.  I was very surprised to see this worked!   I’m having some problems with bash, but all of my day to day software is up and running.  Nice.

TL;DR: LMDE was using an old kernel so I needed the real debian testing (jessie) to solve my driver problems.

So many flavours – with bonus privacy rant!

January 21st, 2014 1 comment

It’s interesting reading the old Linux Experiment first posts when people were contemplating which distro to install.  It’s been 4.5 years since then and the linux world has evolved.  Most noticeable, was no one talking about Mint!

I was considering three distros for my home PC dual boot:

  1. Debian
  2. LMDE
  3. Mint

I wanted something in the debian family since it seems to be receiving, by far, the most attention.  I expect this also means it gets the most activity and updates.  Ubuntu would probably work the best out of the box, but as you probably already know:

https://en.wikipedia.org/wiki/Unity_%28user_interface%29#Privacy_controversy

Ubuntu’s privacy issues are a deal breaker of course, but they also made me question Mint.  I don’t want to support Ubuntu and I think using Mint would indirectly do that.  Also, Mint does have some minor default search engine sketchyness going on.   I realize that these developers need funding, but I don’t think selling their users’ stats or useage is the way to do it.  I think donations are the way to go and they seem to be working for Wikimedia.  Developing non-essential non-related commercial software in parallel with the OS might be another alternative… hmm, sounds like a slippery slope.

The plan was: Try LMDE first, Debian stable if more stability is needed, and Mint if I got to the point that I just wanted things to work.  Results to follow!

TL;DR:  I planned to install LMDE or Debian, since Ubuntu wants to track me.

Screen brightness work around (part 2)

January 19th, 2014 No comments

As mentioned before I am having some issues with my laptop’s hardware and controlling the screen brightness. Previously my work around was to set acpi_backlight=vender in the grub command line options. While this resulted in having full screen brightness it also removed my ability to use my keyboard function keys to adjust the screen brightness on the fly (not so good when you’re on battery). Removing this option allowed me to manually adjusted my screen brightness again but once again always started the laptop at zero brightness. What to do?

While far from a perfect solution my current work around is to use xdotool to simulate key presses on login which raise the screen brightness for me automatically. Here is the script that I run on startup:

#!/bin/bash
for i in {1..20}
do
     xdotool key XF86MonBrightnessUp
done

While this works great it still isn’t perfect. Because xdotool requires an X session it means I cannot run it before one is created. If you were unaware the login screen, in my case MDM, does not run inside of X (it actually starts X when you successfully login). So while this will automatically brighten my screen it won’t do so until I type in my username and password, leaving me to type into a fully dark screen or manually adjust the brightness up enough to see what I’m doing. Hopefully I’ll have a better solution sooner rather than later…




I am currently running a variety of distributions, primarily Linux Mint 18.
Previously I was running KDE 4.3.3 on top of Fedora 11 (for the first experiment) and KDE 4.6.5 on top of Gentoo (for the second experiment).

Initial thoughts about PC-BSD

January 16th, 2014 No comments

[Please note: this is a historical post – I’m no longer running *BSD in 2014, and this is a collection of thoughts on its setup in case I decide to return to the operating system. Further posts from me will focus on other Linux experiences.]

So after not too much effort, I’ve gotten PC-BSD to replace my FreeBSD installation and am back up and running. Some minor tips, interesting facts and tweaks:

  • Default filesystem and mountpoints all seem to be ZFS, which would make PC-BSD probably the quickest and easiest way to get a functional desktop environment running with this neat filesystem.
  • To enable Flash playback in Chromium (and I assume Firefox), run
    flashpluginctl on

    from the terminal (under your own user account, not root) and restart the browser. Thanks to the PC-BSD forums for this answer.

  • Enabling SSH server: add sshd_enable=”YES” to /etc/rc.conf, then /etc/rc.d/sshd start. You’ll also need to allow TCP port 22 inbound through the firewall in the PC-BSD Control Panel/Networking/Firewall Manager application.
  • Sound worked out of the box without any driver finagling, and is a much more simplistic setup:

 

From the PC-BSD Control Panel, a very simple way to select the default sound device.

From the PC-BSD Control Panel, a very simple way to select the default sound device.

I’m assuming the situation would have been better than the Kubuntu trials and tribulations with PulseAudio – all the possible nVidia HDMI output ports are listed in this dropdown list, as well as my onboard sound and USB/stereo audio adapter. In Phonon, the list is much simpler:

No greyed-out cards or shenanigans - Phonon just shows the default sound card from PC-BSD.

No greyed-out cards or “missing sink”s – Phonon just shows the default sound card from PC-BSD.

 

So far this has been a pretty great introductory experience – the desktop is polished, KDE integration appears to work well, and manual configuration has been limited to what I’d consider more advanced functionality like the SSH daemon.




I am currently running Ubuntu 14.04 LTS for a home server, with a mix of Windows, OS X and Linux clients for both work and personal use.
I prefer Ubuntu LTS releases without Unity - XFCE is much more my style of desktop interface.
Check out my profile for more information.
Categories: Flash, Jake B, PC-BSD Tags: , ,

What up? (First Post)

January 16th, 2014 No comments

My first post here – starting a linux experiment:

First of all, I would like to thank Tyler B for helping me get started by patiently answering my level 0 linux questions.

I’ve installed linux several times in the last ten years, sometimes for fun, but usually when required for school.  I’ve even developed a linux app complete with a GUI and DB integration.  But even with all this exposure to linux I’ve managed to learn very little about it.  How is that possible?  Well, if you stick to pre-configured dev environments with working tools, avoiding learning about the OS is easy.

My new project has a different motivation.  Rather than using Linux to complete a project, using Linux is the project.  I want to understand how linux works and I think the best way to start is to “learn by doing”.  My plan is to use linux on my main home computer for everything except Windows gaming, which is rare for me anyways.  I would then like to move on to LFS.

TL;DR: I’m going to install and learn about linux.

Categories: Greg W, Linux Tags:

Listener Feedback Podcast Update (December 2013)

December 15th, 2013 No comments

Fix annoying high-pitched sound

November 28th, 2013 No comments

If you’re like me you’ve been suffering through a crazy high-pitched sound emanating from your laptop speakers. Apparently this is a common issue with certain types of audio devices. Thankfully via the power of the Internet I’ve been able to finally find a solution!

It turns out that the issue actually stems from some power saving features (of all things) in the Intel HDA driver. So I simply turned it off and guess what? It worked.

1) Open up (using root) /usr/lib/pm-utils/power.d/intel-audio-powersave

2) Replace or comment out the line:

INTEL_AUDIO_POWERSAVE=${INTEL_AUDIO_POWERSAVE:-true}

3) In its place put the line:

INTEL_AUDIO_POWERSAVE=false

4) Reboot

Hopefully this also works for you but if not check out the site I found the solution at for some additional tips/things to try.




I am currently running a variety of distributions, primarily Linux Mint 18.
Previously I was running KDE 4.3.3 on top of Fedora 11 (for the first experiment) and KDE 4.6.5 on top of Gentoo (for the second experiment).